病果树上主要表现有哪些?
(2)粉状物病原物呈粉状结构,常见的有白粉、红粉、 锈粉等。如柑橘的白粉病和葡萄的白粉病等。(3)镑状物叶上出现的疱状凸起,呈铁锈色或黑色,是 多种锈病的特有病征。如梨锈病等。(4)点状物从病部表皮下面生出来的小点状结构,突破或 不突破表皮,多为黑色,也有红色或黄色。
单氰胺在果树上怎样使用?
单氰胺产品为50%水剂,作为植物生长调节剂主要用于果树打破休眠、促进早发芽。一般使用浓度为50%水剂10~20倍液,在葡萄发芽前15~20天喷于枝条,使芽眼处均匀着药,可提早发芽7~10天,从而对开花、着色、成熟均有提早作用;在樱桃休眠期喷洒,使芽眼处均匀着药,可打破休眠,促进早发芽、早开花、早成熟,有明显提高产量和改善品质的作用。本剂对蜜蜂有高风险性,在蜜源植物花期禁止使用。
氮磷钾!分别对农作物有什么作用
氮肥作用:促使作物的茎,叶生长茂盛,叶色浓绿.
钾肥的作用:促使作物生长健壮,茎秆粗硬,增强病虫害和倒伏的抵抗能力;促进糖分和淀粉的生成
磷肥的作用:促使作物根系发达,增强抗寒抗旱能力;促进作物提早成熟,穗粒增多,籽粒饱满氮 :
氮是构成蛋白质的主要成分,对茎叶的生长和果实的发育有重要作用,是与产量最密切的营养元素。在第一穗果迅速膨大前,植株对氮素的吸收量逐渐增加。
以后在整个生育期中,特别是结果盛期,吸收量达到最高峰。土壤缺氮时,植株矮小,叶片黄化,花芽分化延迟,花芽数减少,果实小,坐果少或不结果,产量低,品质差。氮素过多时,植株徒长,枝繁叶茂,容易造成大量落花,果实发育停滞,含糖量降低,植株抗病力减弱。番茄对氮肥的需要,苗期不可缺少,适当控制,防止徒长;结果期应勤施多施,确保果实发育的需要。
磷肥能够促进番茄花芽分化,提早开花结果,促进幼苗根系生长和改善果实品质。缺磷时,幼芽和根系生长缓慢,植株矮小,叶色暗绿,无光泽,背面紫色。
番茄对磷的吸收以植株生长前期为高,在第一穗果实长到核桃大小时,植株吸磷量约占全生育期90%。所以,番茄苗期不能缺磷,以免影响花芽分化。番茄吸收磷肥的能力较弱,尤其在低温下的吸收率较低。磷肥一般作基肥,也可用0.5%磷酸二氢钾溶液作叶面喷施,进行根外追肥。钾在植物体内促进氨基酸,蛋白质和碳水化合物的合成和运输,对延迟植株衰老,延长结果期,增加后期产量有良好的作用。
钾能促进植株茎秆健壮,改善果实品质,增强植株抗寒能力,提高果实的糖分和维生素C的含量,和氮、磷的情况一样,缺钾症状首先出现于老叶。钾素供应不足时,碳水化合物代谢受到干扰,光合作用受抑制,而呼吸作用加强。因此,缺钾时植株抗逆能力减弱,易受病害侵袭,果实品质下降,着色不良。番茄对钾肥的需求主要是在果实迅速膨大期以后。
钾肥一般是在基肥时施入,果实膨大期可施用复合肥或叶面喷施0.5%磷酸二氢钾溶液。植株中大部分钙存在于叶内,并且老叶中钙的含量比嫩叶高,大量的钙以果胶酸钙的形式固定在细胞壁的中胶层中,成为细胞质膜和细胞壁的重要成分。钙可以促进根的形成和生长,促使茎秆粗硬,增加养分吸收,有利提高番茄果实中糖和维生素C的含量。由于钙在植物体内不容易移动和重新分配,缺钙时首先是生长点死亡,上部叶片变黄,叶尖叶缘萎蔫,叶柄扭曲,茎顶端呈坏死斑点,脐部黑腐。缺钙时可用0.4%氯化钙溶液叶面喷施。钙多存在于幼嫩器官,是叶绿素分子的重要组成元素。氮肥作用:促使作物的茎,叶生长茂盛,叶色浓绿.
钾肥的作用:促使作物生长健壮,茎秆粗硬,增强病虫害和倒伏的抵抗能力;促进糖分和淀粉的生成
磷肥的作用:促使作物根系发达,增强抗寒抗旱能力;促进作物提早成熟,穗粒增多,籽粒饱满
同意此观点
磷的生理功能是什么?
1、钙磷共同参与的生理功能
(1) 成骨:绝大多数钙磷存在于骨骼和牙齿中,超支持和保护作用。骨骼为调节细胞外液游离钙磷恒定的钙库和磷库。
(2) 凝血:钙磷共同参与凝血过程。血浆Ca2+作为血浆凝血因子Ⅳ,在激活因子Ⅸ、X、Ⅻ和凝血酶原等过程中不可缺少;血小板因子3和凝血因子Ⅲ的主要成分是磷脂,它们为凝血过程几个重要链式反应提供“舞台”。
2、Ca2+的其他生理功能
(1) 调节细胞功能的信使:细胞外Ca2+是重要的第一信使,通过细胞膜上的钙通道(电压依赖性或受体门控性)或钙敏感受体(calcium sensing receptor,CaSR),发挥重要调节作用。CaSR是G蛋白耦联受体超家族C家族的成员,它存在于各种细胞膜上,细胞外Ca2+是其主要配体和激动剂。两者结合后,通过G蛋白激活磷脂酶C(PLC)-IP3通路及酪氨酸激酶-丝裂原蛋白激酶(MAPK)通路,引起肌浆网(SR)或内质网(ER)释放Ca2+,以及细胞外Ca2+经钙库操纵性钙通道(store operated calcium channel,SOCC)内流,使细胞内Ca2+增加。细胞内Ca2+作为第二信使,例如:肌肉收缩的兴奋-收缩耦联因子,激素和神经递质的**-分泌耦联因子,体温中枢调定点的主要调控介质等,发挥重要的调节作用。研究表明,CaSR参与维持钙和其他金属离子稳态,调节细胞分化、增殖和凋亡等。
(2) 调节酶的活性:Ca2+是许多酶(例如脂肪酶、ATP酶等)的激活剂,Ca2+还能抑制1α-羟化酶的活性,从而影响代谢。
(3) 维持神经-肌肉的兴奋性:与Mg2+、Na+、K+等共同维持神经-肌肉的正常兴奋性。血浆Ca2+的浓度降低时,神经、肌肉的兴奋性增高,可引起抽搐。
(4)其他:Ca2+可降低毛细血管和细胞膜的通透性,防止渗出,控制炎症和水肿。
3、磷的其他生理功能
(1) 调控生物大分子的活性:酶蛋白及多种功能性蛋白质的磷酸与脱磷酸化是机体调控机制中最普遍而重要的调节方式,与细胞的分化、增殖的调控有密切的关系。
(2) 参与机体能量代谢的核心反应:ATP=ADP+Pi=AMP+Pi
(3) 生命重要物质的组分:磷是构成核酸、磷脂、磷蛋白等遗传物质,生物膜结构,重要蛋白质(各种酶类等)等基本组分的必需元素。
(4)其他:磷酸盐(HPO42-/H2PO4-)是血液缓冲体系的重要组成成分,细胞内的磷酸盐参与许多酶促反应如磷酸基转移反应、加磷酸分解反应等,2,3-DPG在调节血红蛋白与氧的亲和力方面起重要作用。磷是植物结构组分元素,主要构成核酸、磷脂、腺苷磷酸、磷酸酯、肌醇六磷酸。磷常以一价和二价正磷酸盐形式被植物吸收。土壤中的磷通过根系主动吸收进入植物体内,需要供应代谢能。土壤溶液中的磷可扩散进入根的质外体,植物根上的H+泵ATP酶将磷泵入共质体和液泡。根吸收的磷经木质部薄壁细胞运入木质部导管后可随蒸腾液流很快运到地上部。再利用的磷是通过韧皮部运输。无机磷酸盐在液泡内对代谢有调节作用。叶中碳水化合物代谢和蔗糖运输也受磷的调节。磷参与能量代谢,遗传信息的储存和传递,细胞膜的构成和酶活动。1.核酸磷酸与核苷生成核苷酸。核苷酸生成核酸(见专家阅读版氮的生理功能)。2.磷脂 磷脂是膜结构的基本组成成分。磷脂分子中既有亲水基团,也有亲脂基团,因此在脂-水界面有一定取向并保持稳定。磷脂分子与蛋白质分子相结合,形成各种生物膜的基本结构。磷脂(卵磷脂和脑磷脂)似乎与原生质的结构框架有关,因此磷脂是叶绿体结构的一部分。这样,磷也可以说是结构性元素。3.腺苷磷酸 腺苷三磷酸(ATP)、腺苷二磷酸(ADP)、腺苷一磷酸(AMP)储存和传递能量。在光合作用光反应过程中,靠光的作用使ADP与无机磷酸结合,生成具有高能量的ATP,这一过程叫做光合磷酸化作用。腺苷磷酸参与各种需能过程。例如生物合成、养分的主动吸收及植物体内同化物运输等。4.烟酰胺腺嘌呤二核苷酸 烟酰胺腺嘌呤二核苷酸(NAD)在光合作用暗反应过程的碳同化(C3途径)中,以及在糖酵解过程中提供能量。5.磷酸酯 磷酸与糖类、醇类形成磷酸酯成为主要中间代谢物。例如三羧酸循环中形成的丙糖、己糖、庚糖、戊糖的磷酸酯。碳水化合物的合成与运输需要磷,单糖间的相互转化一般是先形成磷酸酯,然后再转化成另一种糖的磷酸酯。6.肌醇六磷酸(植酸) 肌醇六磷酸是种子中储藏磷的主要形态。在种子成熟过程中由于种子内缺乏肌醇六磷酸酶,所以肌醇六磷酸很稳定不致水解。在干燥种子吸水萌发过程中合成肌醇六磷酸酶,迅速水解肌醇六磷酸,释放出磷供种子萌发和幼苗生长之需。在植物生长早期充分供磷对形成繁殖器官至关重要。在种子和果实中可测出大量磷,肌醇六磷酸钙镁是种子中磷储备的主要形式。所以磷有促熟作用,对改善作物品质也很重要。7.辅酶、辅基 辅酶和辅基的组成与维生素和核苷酸有关。维持酸碱平衡……